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Abstract
The prediction of protein-ligand binding free en-
ergies is an important goal of computational bio-
chemistry, yet accuracy, reproducibility and cost
remain a problem. Nevertheless, these are es-
sential requirements for computational methods to
become standard binding prediction tools in dis-
covery pipelines. Here we present the results of
an extensive search for an optimal method based
on an ensemble of umbrella sampling all-atom
molecular simulations tested on the phosphory-
lated tetrapeptide, pYEEI, binding to the SH2 do-
main, resulting in an accurate and converged bind-
ing free energy of −9.0±0.5 kcal/mol (compared
to experimental value of −8.0± 0.1 kcal/mol).
We find that a minimum of 300 ns of sampling
is required for every prediction, a target easily
achievable using new generation accelerated MD
codes. Convergence is obtained by using an en-
semble of simulations per window each starting
from different initial conformations and by opti-
mizing window-width, orthogonal restraints, reac-
tion coordinate harmonic potentials and window-
sample time. The use of uncorrelated initial con-
formations in neighboring windows is important
for correctly sampling conformational transitions
from the unbound to bound states that affect sig-
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nificantly the precision of the calculations. This
methodology thus provides a general recipe for
reproducible and practical computations of bind-
ing free energies for a class of semi-rigid protein-
ligand systems, within the limit of the accuracy of
the forcefield used.

1 Introduction
Achieving a standard, reliable, and accurate pro-
tocol for the quantitative determination of protein-
ligand binding affinities has remained one of the
pivotal problems in computational biochemistry;
its attainment is set to yield a tremendous gain
in the basic understanding of molecular biologi-
cal processes. Attempts to compute binding affini-
ties have been made since near the inception of
computational biomolecular modeling and several
notable methods involving molecular dynamics
(MD) simulations have arisen.1,2 The underpin-
ning problem circumvented by all of these meth-
ods is that unbiased equilibrium-based free ligand
binding using an all-atom model (including sol-
vent) is computationally possible in certain cases
although much more expensive than the present
calculations. Another route is therefore employed
in arriving at a quantitative determination of the
binding free energy.

At the high-throughput end, empirically tuned
methods such as linear interaction energy (LIE)
methods3–5 are used with the forfeit of compro-
mising some accuracy. One major strategy is to
use implicit solvent MD,6 which drastically re-
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duces the computational cost, sometimes at the ex-
pense of neglecting crucial structural water medi-
ated interactions.7 Such continuum solvent meth-
ods are often used in conjunction with thermo-
dynamic cycle methods, such as the molecular
mechanics Poisson-Boltzmann/Generalized-Born
solvent accessible surface area (MMPB/GBSA)
methods,2,8–13 that indirectly compute the bind-
ing free energy in solution by separation of the
solvation and in vacuo interaction components
of the free energy. Other more accurate and
computationally intensive methods involving "al-
chemical" mutations, such as free energy pertur-
bation (FEP)14–16 and thermodynamic integration
(TI)17–19 have been traditionally employed for–
but not limited to–calculating relative binding free
energies between related protein-ligand combina-
tions, being able to calculate absolute binding free
energies.20 The latter however, having a much
larger computational cost.

Methods involving the biased sampling along a
set of pre-selected reaction coordinates that follow
physically meaningful binding pathways have also
found a measure of success. These include meta-
dynamics,21,22 adaptive force bias,23 the Jarzynski
method24,25 and umbrella sampling26,27 amongst
others. For example, metadynamics approaches
have been used to determine peptidic binding of
highly flexible target proteins,28 whilst biased um-
brella sampling methods have shown that accu-
rate binding free energies are indeed possible once
conformational (rotational and translational) re-
straints are properly sampled.29–33 The overrid-
ing problem with such methods is that they re-
quire extensive knowledge of the specific system,
in order to apply the relevant biases; they are thus
costly in human resource, requiring informed and
manual selection of appropriate restraints in the
configurational space and are thus not scalable in
a standard way to the high-throughput domain.
Recently an unbiased umbrella sampling method
was reported using only a one-dimensional poten-
tial of mean force (PMF) calculation34 and the
weighted histogram analysis method (WHAM).35

Although only modestly precise when applied to
the benzamidine-trypsin system, the method does
away with conformational biasing and applies only
generic restraints, orthogonal to the direction of
binding. Furthermore the ease of implementation

of this method makes further evaluation of it an
attractive prospect for being an optimal method
for high-throughput binding free energy determi-
nation, provided that the fundamental problem of
sufficient sampling can be overcome.

The current age of micro- to millisecond MD
brings with it the ability to test the hypothesis
that current MD forcefields are accurate enough
to reproducibly attain accurate binding free ener-
gies, given enough sampling. Aggregate sampling
across such timescales has been implemented by
several groups,36–41 primarily with respect to con-
formational dynamics and protein folding and
lends itself naturally to distributed computing ini-
tiatives.42 Furthermore, the recent advances in
programmable GPU technology43–45 have facil-
itated several initiatives, like ACEMD,44 a new
generation fast MD code exclusively running on
GPUs and GPUGRID, a distributed computing
project46 for molecular dynamics simulations. Us-
ing this resource, we have previously shown that
extensive sampling (over 19 µs of aggregate sam-
pling) using the 1D-PMF method for a larger-
ligand system results in accurate binding free ener-
gies compared with experiment,46 while with the
optimization reported here only 300 ns are neces-
sary.

In this paper, we investigate whether such a
method can be made robust, convergent and re-
producible, whilst optimizing the protocol to min-
imize the amount of required computational cost
and crucially retaining the accuracy of the result.
To allow optimal comparison to other methods29

and our earlier investigations,47 the method is ap-
plied to the Src homology 2 (SH2) domain binding
to the phosphorylated tetrapeptide pYEEI. SH2
domains are non-catalytic domains48 composed of
approximately 100 amino acids,49 involved in a
large variety of tyrosine-kinase signal transduction
pathways50–52 and bind short peptidic sequences
containing phosphorylated tyrosine residues.53,54

Furthermore, many pathological conditions, such
as autoimmune diseases, cancer and asthma, can
be associated with the incorrect function of SH2-
mediated processes, making them an attractive
target for structure-based drug design.55–57 This
ubiquitous role in cell function and regulation48,50

imposes conditions of high affinity and specificity
for a range of peptides,58–63 making them an ex-
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cellent template to differentiate various computa-
tional methodologies,29,47,64

Here, we first re-implement our extensive 1D-
PMF sampling protocol used previously,46 ana-
lyzing its convergent properties. Secondly, we
adapt the 1D-PMF protocol through a sequence of
optimizations. These include window-width and
thus corresponding harmonic restraint variation,
the use of ensemble trajectory sampling, which has
been shown to be advantageous over single tra-
jectory sampling in other methods13 and the use
of multiple initial conditions. At each stage, the
computational cost is reduced or the correspond-
ing accuracy and convergence increased. As the
sampling required to achieve convergence is re-
lated to the conformational freedom and thus the
size of the system, the protocol that emerges from
this optimization is capable of producing accurate
and reproducible binding free energies up to the
given size of system implemented here. This result
would allow a vast array of ligand-protein binding
free energies up to the given molecular weight to
be accurately and rapidly determined through high
throughput molecular simulation.

2 Materials and Methods

2.1 System preparation
The input model is based on the bound crystal-
lographic structure of the complex of the human
p56lck domain and the peptide phosphotyrosine-
Glu-Glu-Ile (pYEEI) (PDB:1LKK) using the
CHARMM2765 forcefield. The phosphotyrosine
residue was assumed to be in its charged form
Y-PO3

2− as experimentally determined.60 Neu-
tral acetylated N-terminus (ACE) and amidated
C-terminus (CT2) residues were used to cap the
peptide. The complex was solvated in a TIP3P66

water box with a boundary at least 12 Å from the
system in the x and y directions and of 52 Å in the
z-direction giving a box-size of 65× 62× 93 Å3,
the z axis being larger to allow for the generation
of several US initial configurations with the ligand
at different distances from the protein (Figure 1a).

The ionic strength was set to 0.15 M of Na+ and
Cl− and the system charge neutralized. The fi-
nal system comprised 38,655 atoms. The reaction

Figure 1: (a) Schematic representation of a sys-
tem for calculation of free-energy of binding. “P”
and “L” are for protein and ligand, respectively.
(b) Schematic visualization of the initial configu-
rations for the US of the SH2 domain/pYEEI lig-
and complex (PDB:1LKK) in the water box.

coordinate z is set to be orthogonal to the plane
formed by the binding interface of the complex;
the protein was then rotated manually during sys-
tem preparation with the aim of providing a large
water reservoir in the direction of the ligand dis-
placement.

The system was minimized and relaxed un-
der NPT conditions at 1 atm and 298K using a
timestep of 2 fs, cutoff of 9 Å, rigid bonds and
PME for long range electrostatic with a grid of
64×64×96. During minimization and equilibra-
tion, the heavy protein atoms were restrained by
a 10 kcal/mol/Å2 spring constant. Two rounds of
velocity re-initialization for 2 ps were performed
under NVT conditions. The magnitude of the re-
straining spring constant was then reduced to 1
kcal/mol/Å2 during 10 ps of NVT before the baro-
stat was switched on at 1 atm for a further 10 ps of
NPT simulation. A final 40 ps of NPT simulation
was conducted with a restraint constant of 0.05
kcal/mol/Å2. Finally, the volume was allowed to
relax for 10 ns under NPT conditions. During this
run, only Cα atoms of the complex were restrained
with a 1 kcal/mol/Å2 constant in order to prevent
reorientation.46
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Production simulations were run using
ACEMD44 over GPUGRID.net46 with the same
parameters used for the relaxation but a timestep of
4 fs due to the use of the hydrogen mass repartition
scheme67 implemented in ACEMD. This elegant
method67 uses the mathematical property that in-
dividual atom masses do not appear explicitly in
the equilibrium distribution, therefore changing
them only affects the transport properties of the
system marginally but not the equilibrium distri-
bution.44

2.2 Initial conformation generation
The umbrella sampling (US) method requires
prior generation of initial conformations for each
window of the production sampling. Window-
centered initial conformations corresponding to
the entire range of the reaction coordinate were
generated via preliminary MD simulations in
which the ligand was displaced by 25 Å along the
z-direction towards the bulk from z = 0 Å to z = 25
Å by applying a linear force F =−kd(z−vt) to all
of its carbon atoms, where kd = 10 kcal/mol/Å2

and v = 5 Å/ns. A second biasing restraint of
k = 0.1 kcal/mol/Å2 was applied to the center of
mass of the ligand to restrain to the xy plane (with
respect to the initial bound position of the ligand).
A harmonic restraint of k = 1 kcal/mol/Å2 was ap-
plied to every Cα atom residing in an α-helix or
β -sheet of the protein further than 9 Å from the
ligand. This prevented rotation and translation of
the protein during ligand separation while preserv-
ing the flexibility of the binding pocket. Snapshots
of the system coordinates (Figure 1b) were saved
at constant intervals. Two sets of initial conforma-
tions were generated using this method. The first
set (denoted IC1 hereafter) employed a single pre-
liminary MD run generating a single initial confor-
mation for each window from that run. The sec-
ond set (denoted IC2 hereafter) employed a total
of 10 preliminary MD simulations, thus generat-
ing 10 initial conformations for each window. Ini-
tial conformations were then chosen by window-
sequential selection across the set of 10 prelim-
inary runs thus ensuring that neighboring initial
conformations were from different runs. Initial
conformations derived from the same preliminary
run thus had a 10 window spacing within the set.

2.3 Umbrella sampling optimization
A number of umbrella sampling (US) simulations
were performed, each varying a protocol parame-
ter, namely, window width (∆w) and correspond-
ingly the number of windows, sample time per
independent simulation per window (t), orthogo-
nal restraints kxy, force constant for the harmonic
window potential kz, the ensemble size or num-
ber of independent simulations (Nr) and finally
whether the initial starting conformation set was
IC1 or IC2 (IC). The reaction coordinate always
extended from z = 0 Å to z = 25 Å with the bound
configuration at position z = 0 Å used as refer-
ence. The parameter sets for the full range of
simulations performed here together with the to-
tal corresponding sampling time (ttot) are listed
in Table 1. All initial US windows were submit-
ted to GPUGRID.net for execution of the US pro-
tocol. Each US window simulation was divided
into several successive steps, with each step be-
ing 4 ns of duration. Each step was run as a sepa-
rate GPUGRID work unit (WU), where each WU
corresponded to about 6 hours of continued com-
putation for a typical GPUGRID volunteer com-
puter, while ACEMD on a top GPU like a GTX480
would perform 50 ns/day for this system. Prelim-
inary runs to generate initial conformations were
performed locally. The rationale for the different
simulations is explained below.
Set 1 corresponded to the implementation of a
previous exhaustive sampling simulation, reported
previously,46 using a small window width 0.1
Å (381 windows) and up to a sampling time of 50
ns per window. Initial conformations were gener-
ated from a single preliminary MD run (IC1).
Set 2 corresponded to the optimization procedure
for the force constants for the harmonic potentials
both for restraining diffusion in the xy plane (kxy)
and for the US potential (kz). It employed a set
of 3 US simulations each of up to 80 ns/window
for a combination of 10 different permutations of
kxy and kz listed in Table 1 and using a larger win-
dow width of 0.5 Å (51 windows). The optimal
parameter set (OPS) was determined as kxy = 1
kcal/mol/Å2 and kz = 0.5 kcal/mol/Å2 (Figure 3).
The initial conformation set was IC2.
Set 3 corresponded to the ensemble sampling pro-
cedure using the OPS. This entailed an ensemble
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Table 1: Umbrella sampling simulation parameter variation. Nr, number of complete US replicas; Nw,
number of windows per US replica; ∆w, US window width; t, simulation time per US window; kxy, force
constant for orthogonal restraints; kz, force constant for US restraints; IC, source of initial conformations;
ttot , total aggregate simulation time.

ID Nr Nw ∆w (Å) t (ns) kxy ( kcal
mol2 ) kz ( kcal

mol2 ) IC ttot (µs)
Set 146 1 381 0.1 50 0.1 10 IC1 19
Set 2 10× 3 51 0.5 80 0.1,1 0.5,1,2.5,5,10 IC2 122.4
Set 3 10 51 0.5 20 1 0.5 IC2 10.2
Set 4 10 51 0.5 20 1 0.5 IC1 10.2

of ten identical US simulations for which the PMF
and subsequent binding free energy was calculated
in order to determine the convergence properties of
the method. Initial conformations were generated
as for Set 2 (IC2).
Set 4 corresponded to the study of the effect of
using a less varied initial conformation set across
neighboring windows. A set of ten identical US
simulations were performed, similar to Set 3 but
using initial conformations generated in a more
simple manner, from a single preliminary MD sim-
ulation (IC1).

2.4 Free-energy calculation
The PMF over the reaction coordinate for each
replica was reconstructed using WHAM35 with a
convergence tolerance of 10−4. From the PMF, the
standard free energy of binding was computed us-
ing the expression given in:34

∆G◦ = ∆WR− kBT ln(
lbAu,R

V ◦ )+∆GR, (1)

where ∆WR is the PMF depth, kB is the Boltz-
mann constant, T is the temperature, lb =∫

bound exp(−WR(z)/kBT )dz is the integral of the
PMF over the bound length, Au,R = 2πkBT/kxy is
the area in the x and y directions of the unbound
ligand, V ◦ = 1,661 Å3 is the standard volume, and
∆GR is the free energy to remove the orthogonal
restraints (on x and y) when the ligand is bound.
∆GR is obtained via a free energy perturbation
approach from the exponential average.34

In order to assess convergence the sampling time
per window used to construct the PMF and thus the
free energy for each replica was increased up to the
maximum sampling time across the 51 windows.

The convergence of each replica with increase in
time was then charted as well as the corresponding
mean and standard deviation.

3 Results and Discussion
We begin by analyzing the exhaustive umbrella
sampling (US) method reported previously,46

called Set 1 here. Optimization of the method re-
quires us to obtain convergent and accurate results
with the minimum sampling time and proceeds
via alteration of window width and a correspond-
ing systematic parameter search with respect to
harmonic restraint values (Set 2). Convergence is
investigated by employing an ensemble of simula-
tions and analyzing across an increasing sampling
time per window (Set 3) and compared against
a similar ensemble with the choice of using less
varied initial conformations (Set 4).

3.1 Exhaustive umbrella sampling
An exhaustive umbrella sampling method utilizing
19 µs aggregate sampling was used to determine
the free energy of binding of SH2 to pYEEI (Set
146 in Table 1, 1 run). The PMF depth (see Fig-
ure 2), is ∆WR = −10.8 kcal/mol, with a small
variation for different times in the US runs, the
bound distance is lb = 0.93Å and the area explored
by the ligand in the xy plane Au,R = 37.07Å2. The
free energy to remove the constraints have a neg-
ligible contribution ∆GR =−0.0124 kcal/mol due
to the low restrain applied. The standard free en-
ergy of binding for the pYEEI ligand is computed
from Eq. (1) as ∆G◦ =−8.5 kcal/mol which com-
pares with a reported experimental value of −8.0
kcal/mol.61

5



0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

18

z (Å)
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Figure 2: Reconstructed potential of mean force
of the SH2 domain/pYEEI ligand complex along
the reaction coordinate, calculated from 381 com-
pleted US configurations of 50 ns each. The PMF
is reconstructed over increasing sample time win-
dows along the US trajectories showing the long
relaxation time of the US simulations. The refer-
ence ∆WR value (PMF depth) computed from the
last PMF is 10.8 kcal/mol producing a standard
free energy of binding of −8.5±0.5 kcal/mol, ac-
counting for the standard volume and biasing fac-
tors. The experimental value for this system is
−8.0 kcal/mol. Simulation is termed Set 1.

Construction of the PMF over the entire data set
thus results in a single value for free energy with-
out specification of the error. In order to com-
pute the error it is first instructive to determine the
amount of sampling time per window required to
stabilize the free energy. Computing the PMF for
increasing sample time within each window (Fig-
ure 2) we see that convergence is achieved after ap-
proximately 50 ns with a value of −8.5 kcal/mol.
This firstly indicates that the sampling can be re-
duced to 12 µs by considering a shorter (25 Å) re-
action coordinate. However, it also indicates that
a long equilibration time is necessary using an ap-
proach with a single simulation per window. An
associated error is then determined by discretiz-
ing the post-equilibration region into 5 ns blocks
and computing the block average (as done in pre-
vious studies34). This results in a binding free en-
ergy of ∆G◦ =−8.5±0.5 kcal/mol and compares
well with a reported experimental value of −8.0
kcal/mol.61 However, the accuracy of the above

result comes at a substantial sampling cost (19 µs);
it is thus desirable to lower these costs by optimiz-
ing the method.

3.2 Determining the optimal parame-
ter set (OPS)

The first optimization strategy is to reduce the
number of windows by increasing the window
width to 0.5 Å. However, alteration of window
width requires further optimization of harmonic
restraints, in particular that of the umbrella sam-
pling potential (kz). To determine the optimal
choice of kxy and kz, an ensemble of three um-
brella sampling simulations for every window is
performed for each of 10 permutations of kxy and
kz (Set 2 in Table 1, 30 runs).

It is clear from Figure 3(a) and (b) that a stabi-
lized PMF is exhibited for various selections of kxy
and kz. For example, for kxy = 0.1 kcal/mol/Å2 and
kz = 1 kcal/mol/Å2 (blue lines in Figure 3(a)), each
of the three members of the ensemble show un-
changing PMF values after 60 ns but vary amongst
themselves over a range of 2.5 kcal/mol.

We have shown thus far that binding free ener-
gies attained using single runs exhibit stable PMFs
with respect to themselves at 50 ns. However,
convergence requires that multiple replicas of the
same run converge to the same value. Here, even
for 80 ns of sampling per window, no harmonic
constraint permutation yields convergent results
between the three members of its corresponding
ensemble, except that of kxy = 1 kcal/mol/Å2 and
kz = 0.5 kcal/mol/Å2 (green lines in Figure 3(a)).
This set converges to within 0.5 kcal/mol within
50 ns of sampling per window at the given win-
dow width of 0.5 Å, establishing it as the optimal
parameter set (OPS). After 50 ns of sampling the
OPS thus attains an accurate binding free energy
of −9.0± 0.5 kcal/mol, within 1 kcal/mol of ex-
periment.

The chosen OPS exhibits the best convergence
but only for an ensemble of three. Whilst suffi-
cient to discriminate it from the other parameter
sets, the absolute binding free energy convergence
properties can be investigated better using a larger
ensemble.

6



Figure 3: Harmonic constraint optimization over a range of kz = 0.5,1,2.5,5,10 kcal/mol/Å2 for kxy = 0.1
(left) and kxy = 1 kcal/mol/Å2(right). Simulation is termed Set 2.

3.3 Convergence and sampling prop-
erties of the optimal parameter set

Here, we perform a larger ensemble of simula-
tions using the OPS (Set 3 in Table 1, 10 runs) and
analyze the corresponding convergence properties
with an increase in sample time per window. We
also investigate whether using less varied initial
conformations across the US profile confers any
difference to the accuracy or convergence proper-
ties the binding free energy. This entails a second
ensemble of similar size and sampling time (Set 4
in Table 1, 10 runs).

The mean binding free energy across the ensem-
ble set as a function of sample time is analyzed
(Figure 4) for each. The free energy for Set 3 ex-
hibits convergence at 6 ns with a free energy of
−9.0±0.9 kcal/mol and convergence to within 0.4
kcal/mol at 20 ns. By contrast, Set 4 does not
exhibit true convergence even up to 20 ns, even
though it yields a flattened mean binding free en-
ergy of −8.7±1 kcal/mol. This is because unlike
for Set 3, the error does not diminish significantly
with increased sampling. Examination of the con-
vergence of each single US run with increasing
sample time (see Supporting Information) shows
that whilst all single runs converge to the same
value for Set 3, they do not for Set 4. Instead sin-
gle runs stabilize on a particular binding free en-
ergy and this results in the error not diminishing
for the latter whilst it does for the former.
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Figure 4: Comparison of two ensembles of 10
US simulations, one where each simulation was
started from a different initial conformation per
window (red), termed Set 3, and the other where
each simulation was started from a single initial
conformation per window (black), termed Set 4.

The above analysis draws us to conclude that,
provided convergence is demonstrated through an
ensemble of runs, a single run using the OPS and
an aggregate sampling time of 300 ns is sufficient
to provide a result to within 1 kcal/mol accuracy
and precision to within 1 kcal/mol and 1 µs to
within the same accuracy but a tighter convergence
of within 0.5 kcal/mol. However, it is important
to note that such an aggregate timescale also re-
quires a sufficient relaxation time to be met within
each window; in this case relaxation leads to con-
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vergence of the binding free energy within 6 ns of
sample time per window.

Furthermore, the analysis also demonstrates that
the choice of initial conformations play a signifi-
cant role in the attainment of convergence. More
specifically, it is the sensitivity to the correlation
between the initial conformations along a single
profile of US windows that affects the convergence
of the binding free energy. Furthermore, deriv-
ing initial conformations from a single preliminary
MD run would require marginally less computa-
tion; however, the loss of convergence due to the
correlated nature of the initial conformations pre-
vents such a choice being optimal.

3.4 Structural correlates of differen-
tial sampling

Convergent sampling depends on the flexibility of
the ligand and the protein across the reaction co-
ordinate. Very flexible ligands/proteins or those
capable of accessing multiple distinct conforma-
tions increase the convergence time because it re-
quires to sample across all the relevant conforma-
tional degrees of freedom. The flexibility of both
the protein and the ligand is thus assessed in terms
of root mean squared fluctuations (RMSF) relative
to the average structure in each window of the re-
action coordinate (Figure 5).

In Figure 5, it is shown that the ligand is more
rigid closer to the surface of the protein (RMSF
∼ 0.6 Å), and more flexible in the unbound state
(RMSF ∼ 1.2 Å). The protein shows similar flexi-
bility upon binding (RMSF ∼ 1.3 Å) with the lig-
and as when unbound. There is a sharp transition
in flexibility in the ligand RMSF between 4.5 and
5.5 Å along the reaction coordinate, while the lig-
and transit from being bound at 4.5 Å to more flex-
ible and unbound over a short distance of 1 Å.

The sensitivity of convergence to the correla-
tion between initial conformations is investigated
in more detail and the structural correlates pertain-
ing to the variation of binding free energies for cor-
related PMF profiles determined. Firstly, the PMF
profiles (Figure 6(a)) of all individual US runs be-
longing to Set 4 (black lines) show greater vari-
ability than the converged PMF profile range of
Set 3 (red band). It is this variation that causes
the 3 kcal/mol deviation between the highest and

the lowest value for the free energy. Crucially,
significant variation with respect to the conver-
gence band commences across windows centered
at 4.5 Å, 5 Å and 5.5 Å, corresponding to the
sharp transition region exhibited in ligand flexibil-
ity, suggesting that it is in this region where ori-
entational and conformational degrees of freedom
play a more important role.

Three profiles from Set 4, corresponding to
the binding free energies of -6.7 kcal/mol, -9.2
kcal/mol and -10.4 kcal/mol from individual sim-
ulations denoted r1, r2 and r3 respectively, are in-
vestigated more closely on the basis that the first
underestimates the free energy, the second lies
within the convergence band and the third over-
estimates the free energy. An examination of the
integrated normalized probability distribution of
the ligand center of mass across the windows cen-
tered at 4.5Å, 5 Å and 5.5 Å (Figure 6(b)) shows
substantially different sampling compared to Set
3 (red). Whilst the converged ensemble samples
a trimodal distribution consisting of a sharp peak
at 0 Å, and two shallower peaks at 2.5 and 3.5
Å respectively, the three individual simulations r1,
r2 and r3 each predominantly simulate a different
mode from each other. Each one, however, cor-
responds to a mode within the trimodal distribu-
tion of Set 3. This confirms that the region with
window centers between z = 4.5 Å and z = 5.5
Å thus corresponds to a sensitive transition region
between bound and unbound states of pY for the
two protocols.

The three sampling peaks exhibited along the re-
action coordinate (Figure 6(b)) correspond to three
distinct structural conformations (Figure 6(c) and
(d)), which are all sampled correctly in the con-
verged simulations but incorrectly in the individ-
ual runs. The most bound conformation (I), at
z = 0 Å, consists of an extremely tight hydro-
gen bond network (6 hydrogen bonds) between
the phosphotyrosine (pY) of the ligand and the
R154, S156, E157 and S158 residues in SH2. This
is due to the favorable conformation of flexible
loop between residues 156 to 162 of SH2 (cyan).
The second conformation (II), at z = 2.5 Å, cor-
responds to a slight retraction of the loop coupled
with the increased separation of the ligand and re-
sults in the loss of 2 hydrogen bonds with S158.
The third conformation (III) at z = 3.5 Å corre-
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Figure 5: Backbone flexibility in terms of root mean squared fluctuations (RMSF) relative to the average
structure in each window of the reaction coordinate. (a) The ligand is more rigid closer to the surface of
the protein (RMSF ∼ 0.6 Å), and more flexible in the unbound state (RMSF ∼ 1.2 Å). A sharp transition
in flexibility is seen between 4.5 and 5.5 Å along the reaction coordinate. Within 1 Å distance, the ligand
transits from being rigidly bound to being flexible and unbound. (b) The protein instead, shows similar
flexibility (RMSF ∼ 1.3 Å) between its bound and unbound conformations.

sponds to a more significant retraction of the flex-
ible loop region losing all of its hydrogen bonds
with pY; only a single hydrogen bond is main-
tained with R154. The individual run r1 thus over-
samples the most bound conformation, increasing
the PMF at that point and resulting in an exces-
sive binding free energy. Conversely, r3 over-
samples the more unbound conformation, flatten-
ing the PMF at that point and eventually result-
ing in a smaller free energy. Finally, r2 over-
samples conformation II which compensates the
loss in bound-conformation sampling with a loss
in more unbound sampling and results in a PMF

change within the convergence band leading to an
accurate binding free energy.

The above analysis shows that the accuracy of
the binding free energy calculation can be signif-
icantly affected by differently sampled structural
events that occur in each window, especially in
windows that correspond to sharp transitions in
ligand flexibility and/or binding that have their
root in discrete structural events such as hydrogen
bonding. Whilst both stably bound and unbound
states are easier to sample correctly by several ap-
proaches, convergence is more profoundly tested
in the transition region between the two. How-
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ever, it is not only the occurrence of such events in
each window that matters but the overall integra-
tion across a number of relevant neighboring win-
dows. Use of correlated initial conformations in-
creases the chance of maintaining insufficient sam-
pling across a set of neighboring windows result-
ing in an incorrect shift in PMF depth (r1 and r3)
which is then propagated along the reaction coor-
dinate. Even though this can occur for uncorre-
lated neighboring windows too, the latter exhibit
far more sampling across windows resulting in a
tighter convergence of the PMF.

4 Conclusions
In this work, we showed that it is possible to deter-
mine accurate, reproducible and scalable absolute
protein-ligand binding free energies using molec-
ular dynamics simulations, at least for the spe-
cific case used here. Our optimized protocol em-
ploys a simply-biased 1D-PMF umbrella sampling
method applied using an ensemble of simulations,
initiated from uncorrelated initial conformations
across neighboring windows and an optimal pa-
rameter set (OPS) describing orthogonal restraints,
force constant for the sampling potential, window
width and sampling time per window.

Applied to the SH2 domain binding to the pY-
EEI ligand, we obtain an absolute binding free en-
ergy of -9.0 ± 0.5 kcal/mol, in good agreement
with experiment (1 kcal/mol deviation), demon-
strating the accuracy of the method. The mini-
mum aggregate sampling time to compute an ac-
curate result is 300 ns with the OPS, a significant
improvement over the 25 µs aggregate sampling
of a previous method.

Our methodology is also demonstrated to be
reproducible; that is, ensemble based repetition
of the calculation shows convergence to within 1
kcal/mol amongst independent simulations for the
above-mentioned aggregate sampling time. Fur-
thermore, we show that it is correct sampling of
sensitive bound-unbound transition regions, corre-
sponding to various phosphotyrosine interactions
in the binding groove, that determine the conver-
gence of the result. Structural correlates of dif-
ferential sampling account for the discrepancies
between different methodologies, and the optimal

methodology presented here overcomes such sen-
sitivities.

The protocol reported concerns the calculation
of the PMF for systems where there is a direct path
from the bulk to the binding site, thus making it
amenable to the 1D-PMF method. Calculations
for more complex binding processes that involve
multiple reaction coordinates and/or significant
protein-ligand conformational changes upon bind-
ing are beyond the remit of the method. Within
the remit, however, as the protocol reported here
does away with system specific conformational re-
straints and the corresponding human choices of
system construct, it is readily scalable to a large
number of protein-ligand systems. There may be
limits of transferability for the parameters opti-
mized on this system when applied to other sys-
tems. A priori it is difficult to determine whether
certain classes of system will exhibit transferable
parameters, but it is likely that flexibility, ligand
size and binding pathway will play an important
role. Cases where the protein is very flexible,68

much more so than the SH2 domain, may cause
a problem because the umbrella sampling would
need to sample correctly all the conformations.
This was possible here where the conformational
fluctuation was limited to a loop of the SH2 do-
main by properly sampling the initial conforma-
tions of the umbrella sampling. The same problem
of conformational sampling applies for very flexi-
ble ligands. Also, if the exit pathway of the ligand
is very narrow, care has to be used in the selection
of the exit direction. In summary, we would ex-
pect this methodology and parameter set to work
for semi-rigid proteins (small loop movements)
and semi-rigid ligands with an easy access path-
way to the binding site. In the case where these
parameters may not be directly transferable (free
energy of binding very different from the experi-
mental value), we believe that a good approach is
to enhance the creation of initial configurations for
the umbrella sampling before undergoing any deep
optimization study. Once the limit of this pro-
tocol is reached, additional optimization methods
like Hamiltonian replica exchange69 would need
to be considered. Finally, as the accuracy and pre-
cision obtained is, in this case, very high, it sup-
ports the accuracy of the forcefield for the given
ligand. However, ligand forcefield accuracy is not

10



the general case, which means that the extensive
and convergent sampling provided by this method-
ology may allow the validation and improvement
of forcefield accuracy for different ligands.
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Figure 6: (a) PMF of all members of the Set 4 ensemble (black lines) against the PMF range of Set 3 (red
band). Notable individual members corresponding to excessive, accurate and underestimated binding free
energies are denoted r1, r2 and r3 respectively. (b) Integrated probability distribution of r1, r2 and r3 for
the differential sampling region exhibited in the PMF across windows centered at 4.5, 5, and 5.5 Å. The
aggregate distribution of Set 3 is also shown (red) as well as the theoretical distribution for a system acting
only under the restraining potential (gray). (c) Principal structural correlates, corresponding to the three
sampling peaks in (b), showing pY interaction with R184, S156, E157 and S158 of SH2. The differential
conformation of the flexible loop region (cyan) corresponds to the degree of hydrogen bonding exhibited.
(d) Surface representation of the corresponding conformations.
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