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We present a simplified kinetic derivation of the multiscale Voronoi based dis-
sipative particle dynamics (DPD) method (Flekkgy & Coveney 1999; Flekkgy,
Coveney & De Fabritiis 2000). The Voronoi tessellation is used to coarse-grain
the molecular level of a fluid resulting in mesoscopic equations of motion for local
mass, momentum and energy. The dissipative particles follow the dynamics of ex-
tended objects subject to forces including pressure and stresses. The stresses and
heat fluxes are computed through constitutive relations which lead to fluctuating
Navier-Stokes hydrodynamics for the solvent. The present formulation is based on
the use of statistical mechanical distribution functions and the connection with
the underlying molecular description of the fluid is maintained through the pair
distribution function and the intermolecular potential. The main features of this
DPD method are the adaptivity of the dissipative particles to the important length
scales of the problem and the explicit role played by the molecular pair distribution
function.
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1. Introduction

There is currently considerable interest in the study of so-called ‘mesoscale’ mod-
eling and simulation methods, which are being used to describe many kinds of soft
condensed matter. Examples of such fluids include multi-phase flows, particulate
and colloidal suspensions, polymers and emulsions, where there may be several co-
existing length and time scales. Fluctuations and Brownian motion frequently play
a central role in determining their behaviour.

The dissipative particle dynamics (DPD) method introduced by Hoogerbrugge
& Koelman (1992) is one such mesoscopic model. It has given rise to a whole family
of subsequent improvements and variations. Although in their original formulation
time was discrete and space continuous, a more recent re-interpretation asserts that
this model is in fact a finite-difference approximation to the ‘true’ DPD, which is de-
fined by a set of continuous time Langevin equations with momentum conservation
between the dissipative particles (Espaifiol 1995).

The DPD technique has been successfully applied to colloidal suspensions (Boek
et al. 1997), polymer solutions (Schlijper et al. 1995) and binary immiscible fluids
(Coveney & Novik 1996). The particles within the DPD scheme are ill-defined
‘mesoscopic’ quantities of the underlying fluid which evolve in a similar way to
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MD particles, but with different inter-particle forces: since the DPD particles are
envisaged to have internal degrees of freedom, the forces between them have both
fluctuating and dissipative components in addition to the conservative forces. New-
ton’s third law is still satisfied, however, and consequently momentum conservation
together with mass conservation produce hydrodynamic behaviour at the macro-
scopic level.

The DPD model we derived is formally similar to conventional DPD, the inter-
actions conserve mass and momentum, as well as energy (Avalos & Mackie 1997;
Espaiiol 1997). However, while conventional dissipative particles possess spherical
symmetry and experience interactions mediated by purely central forces, our dissi-
pative particles are defined as space-filling cells on a Voronoi lattice whose forces
have both central and tangential components. These features are shared with a
model studied by Espafiol (1998) which links DPD to smoothed particle hydro-
dynamics (Monaghan 1992) and defines the DPD forces by hydrodynamic consid-
erations in a way analogous to earlier DPD models. Recently, Serrano & Espariol
(2001) have introduced a model very much like ours using the so-called “GENERIC”
scheme to include fluctuations.

The purpose of the present paper is to present a kinetic derivation of our mul-
tiscale DPD model. The kinetic approach has the benefit of explicitly maintaining
the connection to the microscopic level through the two-particle or pair distribu-
tion function appropriate to pairwise inter-molecular interactions. Compared to our
previous papers (Flekkgy & Coveney 1999; Flekkgy et al. 2000) the present work
also presents a number of theoretical simplifications and some important practi-
cal improvements. The theoretical simplifications include a more direct and simple
derivation of the fluctuations.

2. The coarse-grained sampling procedure

The dynamics of our model involves the central idea of fluid volumes on which
thermodynamic quantities such as density, pressure and temperature are defined.
A partition of space is given in terms of the Voronoi tessellation. Given a set of
points {ry,...,rn}, a partition of the space assigning every point to its nearest site
is called a Voronoi tessellation. The Voronoi partition k consists of all points x at
least as close to ry as to any other point, i.e. {x: |ry — x| < |1, — x|,V k #}. If
we partition a fluid region in terms of a Voronoi tessellation, then to each partition
is associated a mass M}, a momentum Py and an internal energy Ej for the fluid
contained in the volume k. If we coarse-grain the information inside the volumes
we obtain a mesoscopic model of our fluid.

A partition of a domain D into space-filling sub-volumes describing mesoscopic
dissipative particles (DPs) represented by their centres {ri(t),...,rn,,(¢)}, is de-
fined through the sampling function Hy : D x R — {0, 1} for the partition (DP)
named k:

Npp
Hy(x,t) = [] Hulx,1) (2.1)
=1

Hu(x,t) = H ((x - M) -ek,> (2.2)
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where H is the one-dimensional Heaviside function with derivative (z), e =
rri /T, T = T(t) — ri(t) and Npp is the total number of dissipative particles.
The function Hy; is the characteristic function of the half-plane with Cartesian
equation (x — ‘”JFT"“) - ey, = 0 containing ri. The function Hy is 1 for all x that
are closer to ry than any other r;. As this is the exact definition of the Voronoi
tessellation, Hy is the characteristic function of the Voronoi partition k and ly; is
the length (area in three dimensions) of the Voronoi edge between k and I. Several
different characteristic functions for the Voronoi tessellation can be written down.
For instance in our previous paper (Flekkgy et al. 2000), a smooth characteristic
function f{ was used to develop the model (note that in the present paper the letter
f is used to denote the single-particle distribution function). Mathematically, the
function ff is a partition of unity of D (Gel’fand & Shilov 1964) and a regularisation
of the function Hy, which is then a discontinuous partition function.

The function Hp(x,t) is literally used to count the number of molecules Ny
which fall inside the Voronoi partition k£ using the formula

N
Ni(t) = Hi(xi(t),1) (2.3)

where N is the total number of molecules contained in the space D. Using the
properties of delta functions and noting that Eq. (2.3) does not depend on the
velocity it is possible to write

N
Ni(t) = /Z5(x —x;(t))0(v — v;(t)) H (x, t)dxdv, (2.4)

where the integral is intended to be over the single-particle phase space of the
system D x R%(the spatial dimensionality d will be taken to be 2 or 3 here). The
number of particles inside the partition k& can be written in terms of the functional

N
fx,v,t) = Zé(x = xi(t))6(v = vi(t)), (2.5)

which is the microscopic single-particle distribution functional which, once ensemble-
averaged over initial conditions, gives the statistical mechanical single-particle dis-
tribution function. Note the drastic change that the use of f introduces by ensemble-
averaging which changes the deterministic description based on an operator con-
taining all the information of the dynamics to a simple function containing only
probabilistic information. Using this notation it is possible to write

Ni(t) = /f(x,v,t)Hk (x,t)dxdv. (2.6)
The mass and momentum of the kth DP are defined as
M) = 3 HGsi(0), m = | v ymaxds (2.7)
i;
Pu(t) = Y Hi(xi(t),tymv; = / fr(x, v, tymvdxdv (2.8)
i=1

Article submitted to Royal Society



4 Gianni De Fabritiis', Peter V. Coveney' and Eirik G. Flekkpy®

where fi(x,v,t) = Hp(x,t)f(x,v,t) is the single-particle distribution functional
localised on the partition k.

The energy of a single particle is given by &;(t) = $mv? + ®; where ®; is the
interaction potential which is given, in the pair interaction approximation we shall
henceforth assume, by ®; = 1 Z;\;l ®(r; — r;). The total energy of the partition &
is given by the sum of the kinetic and potential energies

Blot( =3 ZH" x;(t),tymv? + = 5 ZH’” x;(t Z 5 (x; — X;j). (2.9)

i=1 VED)

The contribution given by the second (potential) term on the right hand side of (2.9)
can be expressed with the same technique used for momentum and mass equations
as 1 [ Hy(x,1)®2(x — y)n( (x,y, t)dxdy, where n® (x,y,t) = Y10, S0, 6(x
x;(t))0(y —x;(t)) is the expression for the microscopic two-particle number density
functional. This can be re-written in the energy Eq. (2.9) as

1 1
Bt (t) = - / Fr(x, v, tymv dxdv + - / ) (x,y,)®s(x — y)dxdy,
DxR? 2 Joxp

2
(2.10)
where n,(f) (x,y,t) = n(x,y,t)Hy(x,t) is the localisation on the partition & of
the two-particle density functional.

It must be stressed that it is not generally possible to define multiplication
of a generalised function by another generalised function in a manner consistent
with the normal product between functions unless one of the two functions is the
derivative of a characteristic function. Here, we will take the time derivative of a
characteristic function for the Voronoi partition, hence ending up with the product
of two generalised functions.

The time dependence of f}, is contained in the characteristic function Hy through
the positions rp and r; and the positions and velocities of the particles x;,v;,
whereas the variables x, v are integration variables. The time derivatives of these

quantities are calculated via the total derivatives of f; and n,(f):

dfic dH,, o

Go o ey g0 (2.11)

d’f) _ %"(2) . d’;(:) (2.12)

% _ f; {_vi . a%a(x X))V — Vi) —a %a(v —v)S(x — Xi):| (2.13)

it ié i =y = 35) = v+ bl — %))~ X2)
i=1 j#i

% = b HHkh5(X' : ekl)(_i‘k -2|-1"z cep +x - %) (2.15)
I=1 htl

where x' = x — %} and §(x' - ey) is a delta function over the surface of the
Voronoi partition or dissipative particle k. It is worth pointing out that Eq. (2.13)
has the same structure as the Liouville equation.

Article submitted to Royal Society



Multiscale dissipative particle dynamics )

3. Microscopic description

At this stage, only coarse-graining of the observables mass, momentum and energy
within the Voronoi cells has been introduced, but the entire dynamics of the Voronoi
volumes is still governed by the microscopic dynamics of the molecules contained in
the functional f(x,v,t). This evolution can be computed from the time derivative
of the coarse-grained values of the observables. The evolution equations will still
be given in term of the operator f which involves knowledge of the positions and
velocities of all the molecules.
A kinematic assumption is that the centre of the Voronoi cell ri moves with
average velocity Uy
r, = Uy (3.1)

for any k = 1,..., Npp. This assumption is an approximation because the centre of
the Voronoi cell is not generally the centre of mass of the cell.

The average velocity U(x,t) = [ fvdv on the surface between two DPs k,[
is approximated by U = % and therefore the relative velocity on the surface
between Voronoi k and [ is v/ = v — U(x,t) = v — %

(a) Mass equation

The exchange of mass for the DP k is given by

dM;, df
—— = [ —=mdxdyv. 3.2
dt at " (32)
The derivative of the delta function (2.13) in % can be expressed as a derivative of
the other integrands using the definition of derivatives of generalised functions:

o Npp
B—Hk(x,t) = Z (S(Xl . ekl)ekl H Hkh (33)
X =1 hl
Hﬂm = mvfiH :%meH 5(x"-ex)v-e (3.4)
kdt ox k s h;él kh kl kL- -

It is now possible to write the exact mass variation for the fluid particle k in the

form IM
X .
— = > My, (3.5)
1EN,
where
. ' ' ' deyy
My, = /mf(x,v,t)é(x cep) (V' cep +x - W)dxdv, (3.6)

Ny, is the set of particle indices in the nearest neighbourhood of particle &, and the
integral with the delta function is intended to be over the surface of the adjacent
DPs or Voronoi partitions k& and I. The integral on the right hand side of (3.6)
means that the exchange of mass depends only on the mass exchange along the
surface of the Voronoi partition between DP k and [ for all the surfaces of the
Voronoi partition k.
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(b) Momentum equation

The exchange of momentum for the volume k is given by

dP; [ dfy
- = /%mvdxdv. (3.7

. . . . N
Expanding this equation using the result Hy, %mv = ( Hy - v) v+ 0" Hy(x,t)F;
we obtain the total momentum exchange as

dP’“ ZPkl+ZHk xi, t) F; (3.8)

leny,

where

d
Py = /mf (x,v,t HHkh5 (x' - ex) x <V' cep +x - %) vdxdv. (3.9)
hl

The kinetic and potential components of the momentum Eq. (3.8) are now analysed
in turn.

The first term in the integral on the right hand side of Eq. (3.9) can be re-written
using the vectorial identity (a-b)c = ca-b, while the factor [, Hyn confines the
domain of integration of the delta function to the Voronoi surface ki

U, + U,

Py = MMT + /mf(x,v,t)&(x' -ex) (v'v' e + (%'

de—f)v') dxdv.

(3.10)
The last term within the momentum conservation equation (3.10) averages to zero
because the positions and velocities of the particles are assumed to be uncorrelated
and the relative velocity v’ is averaged to zero. From kinetic theory, we can interpret
the term [mf(x,v,t)v'v'dv as being identical to II(x,t) where II(x,t) is exactly
the kinetic contribution to the pressure tensor (Cercignani 1969).

The second term on the right hand side of the momentum Eq. (3.8) is given by
the potential contributions responsible for the hydrostatic pressure between DPs
and can be rewritten in the pair approximation using the assumed pair-interaction
approximation for the inter-molecular force F; = > it F(x; —x;). Thus the second
summation in Eq. (3.8) becomes

ZH’“ (x4, 1) F—/Hkxt (x—y ZZ(S Yy —X;)0(x — x;)dxdy. (3.11)

i=1 j#i

The ensemble average of n(?) (x,y) = Y.~ , > iz 0(y—x;)8(x—x;) = n D (x)nV (y)g(x,y)
is the two-particle number density function and the second equality follows from
the definition of g as the pair distribution function. Thus, considering that inside
the partition Vj the summation of the forces over the molecules is zero because of
Newton’s third law, the integral can be written in terms of the variable x =y +r

N
ZH’“ (xi,t)F; = / dx/ (x)nM (x +r)g(x,x + r)F(r)dr. (3.12)
i1 Vi D\v,c
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The dependence on the pair distribution function is one particularly interesting
feature of our model compared with more conventional DPD (P. Espafiol & P. War-
ren 1995). In applications, this function can either be inserted explicitly or handled
implicitly by using an equation of state for the specific fluid of interest. The pair
distribution function g depends on the position x only through the thermodynamic
quantities of mass density p(x,t) and temperature T'(x,t) at the interface between
DP k and I. A proper description of multicomponent fluids would depend critically
on the presence of this function.

(¢) Energy equation

The total interaction energy for the kth DP is given in terms of the kinetic and
potential energy contributions via the equation

Etot d (2)
ddlz —/%vadxdv 2/ Z’; o (x — y)dxdy. (3.13)

The first integral on the right hand side of Eq. (3.13) corresponds to the time
variation of the kinetic part of the energy and the second to the time derivative of
the potential, so that Eq. (3.13) may be written

dEL!
dt

= Z Kkz + E,ccI> (3.14)
LEN

where the kinetic component is

deu 1

Ky = /mf (x,v,t HHkh(S (x'-ep)(v' ey +x' - = )2 muldxdv (3.15)
h#l
and the potential component is
dn'?
E} _ZHk xi, t)Fi-v; + 2/ d’; Dy (x — y)dxdy. (3.16)

i=1

We now analyse each of these contributions in turn.

The term Kj; in Eq. (3.15) is re-written using the vectorial identity (a - b)(c
d) = (ca-b) -d and the identity $mv? = Im(v')? + mv' - Bt 4 Ly (Uatli)2
in order to express the kinetic energy in terms of the relative velocity v'. Then,

using the deﬁnition of the thermal energy Ej(t) = E°(t) — % P’“ together with
;t s = Uy, - — 1 MU, the kinetic part of the internal 1nteract10n energy is
given by

. 1 1 U
Ey = Z / f(x,v,t)d(x"-eg) |V (3M§771(1)')2 +x'- ('3M§771(1)')2 —m(v'V ey - —~
1

(3.17)
where terms of order U7, are discarded, as well as terms depending on the rela-
tive velocity v’ only, which average to zero. We can interpret the term J?(x,t) =
[ f(x,v,t)3m(v")?dv as the kinetic expression for the heat flux. As for the pressure
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tensor, at this level of coarse-graining, this is still the exact operator corresponding
to the heat flux.

The second term contributing to the energy Eq. (3.14), corresponding to Eq. (3.16),
is given by the contributions arising from the non-locality of the inter-molecular

o)
potential. The quantity d’;’; = %n@) + Hy, d’;(:) is computed using Eq. (2.14)
leading to the following expression
2(2) L e 0
WO H(N)B(x—y) = TPy 60 € 2 (Hilx )@ (x - )
0
+n- gqh(X - Y)Hk (X7 t) ) (318)

where f)(x,y,&,1,8) = 3, 3, 6(x = xi(1))6(y —%;(7))3(€ —vi(7))d(n —v;(7))
is the microscopic two-particle distribution functional. The final expression for the
potential energy of interaction considering the additional potential term arising
from the transformation from total to internal energy is thus

K =5 X[m0y, €m0 - eu) (€ eut x - ) ol - y)axayded
1EN,
1
+5 / 12 (%, y,&m D H (6, F (x = y) - (€ + 1 — 2Uy)dxdydgdn. (3.19)

The first integral is added to the kinetic term in Eq. (3.17) to produce the internal
energy Ej, while the second term is added to the work terms in the same Eq. (3.17);
it can be thought of as an additional contribution due to the work performed by
the intermolecular forces (de Groot & Mazur 1962).

4. Temporal and ensemble averaging

The foregoing equations of mass, momentum and energy conservation were derived
without any loss of information from the microscopic description of the fluid. At this
point, we reduce the operator f to a function containing only statistical mechanical
information about the dynamics of the system. To do this, we define a characteristic
timescale §t,, and we discretise the time evolution as t,+1 = t, + dt,, where dt,
is the size of the time step at time t,. From this, we can compute the average of
the function f over the time interval dt,,. An integration over time is carried out
yielding

_ - oy N

fe, (x, V)0t + fr, (x,v) = / < Z(S(X —x4(1))0(v — vi(7)) >dr, (4.1)

tn i=1

where < ... > denotes an ensemble average and time averages are taken to split the
information contained in the rapidly varying function f into averaged and fluctuat-
ing parts denoted by bars (f) and tildes (f) respectively. In the mass, momentum
and energy equations time enters only through the function f, therefore the time in-
tegral can always be computed as in Eq. (4.1). To indicate these dynamical averages
we use the notation

< F(x,v) >pi= /7(x,v,t)5(x' ep) F(x,v) dxdv (4.2)
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to define the time average of any dynamical function F'(x,v) on the DP surface kl.

In the momentum Eq. (3.10) the one-particle distribution functional can be aver-
aged to the local Maxwell-Boltzmann distribution and the integral carried out to ob-
tain the inviscid pressure tensor. Considering as well the first non-equilibrium con-
tribution to the Maxwell-Boltzmann equilibrium we would obtain the Navier-Stokes
pressure tensor, which is therefore the first approximation to the non-equilibrium
pressure tensor (Huang 1987). The transport coefficients in the stress tensor, i.e.
the first and second viscosity coefficients, and consequently the form of the pressure
tensor itself are indirectly related to the inter-molecular potential, via the dynamics
of the one-particle distribution function. In fact, the averaged one-particle distribu-
tion function f depends on the two-particle distribution function via the BBGKY
hierarchy. Thus, for an interacting multicomponent fluid, say, its description in
these terms, while not producing the correct kinetic pressure tensor, would en-
able the potential contribution to be explicitly and correctly computed. This first
non-equilibrium approximation produces a macroscopic term

< V'V ey >p= Il - e, (4.3)

where IIj; is the kinetic pressure tensor evaluated on the Voronoi surface kl given
au, BUB . . .
a4 m), where the Einstein notation has

Oxpg

been used for the tensorial indices and the second viscosity coefficient ¢ = (2/d)n
has been assumed with d the spatial dimension.

The kinetic heat flux J,(x,t) = [ f(x,v,t)v'v' 2dv of Eq. (3.17) is given by the
constitutive relation J, = —AVT where T is the temperature.

The fluctuating components of the pressure tensor and heat flux are given ac-
cording to Landau and Lifshitz (1989) by the f function as two additional stochastic
terms in the pressure tensor and the heat flux

by the expression I1(¢5) = Pdag — N (

oU, ouU,
af @ B af
o = 7 <8x5 + —8%) + 597, (4.4)
J, = —-AVT+q, (4.5)

where s°%(x,t) = [ f(x,v,t)v'v'dv and q(x,t) = ff(x,v,t)v’%v’2dv. The fluc-
tuations are not present in the mass equation because the continuity equation is
supposed to be an exact equation on the velocity field. The use of these consti-
tutive relations assures Navier-Stokes fluctuating hydrodynamics for the solvent
represented as a DPD fluid. Applications of the DPD formalism to simulate com-
plex fluids in this way then consists of using such a DPD fluid for the solvent and the
use of flexible boundary conditions to describe complex fluid behaviour involving
colloids, polymers, multiphase fluids, and so on.

5. Mesoscopic description

The differential equations for mass, momentum and energy become stochastic dif-
ferential equations (SDEs) when the averaged and the fluctuating components are
inserted. The formalism of SDEs is better understood by interpreting the fluctu-
ations as Wiener processes (van Kampen 1992; Kloeden & Platen 1992), simul-
taneously specifying which interpretation (Stratonovich or 1t6) we choose for the
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stochastic terms (Flekkgy et al. 2000). Given the coarse-grained nature of the ran-
dom force and fluctuating heat flux, the stochastic terms must be understood as
internal noise and the Stratonovich interpretation used for stochastic integrals.

(a) Mass equation

The coarse-grained mass exchange can be interpreted on the basis of the previous
assumptions. In order to calculate the integral on the right hand side of Eq. (3.6) a
change of variable must be made for the x variable. In two dimensions, considering
the change of frame of reference ¢ = x' - eg;; g2 = x' - ig; the right hand side of
Eq. (3.6) becomes

. de
My = /mf(q,v,t)&(ql) (VI ey + @%) dgdgzdv. (5.1)

The first integrand on the right hand side of (5.1) is zero because, assuming linear
interpolation of the macroscopic velocity field, the averaged velocity on the Voronoi
edge kl is (U 4+ U;)/2. This is consistent with the fact that the DPs move by
following the hydrodynamic flux. The second term in the integral in Eq. (5.1) can
be easily computed assuming linear interpolation of the mass density as

M, =% ”’“Twﬂkldt, (5.2)
[

Ut
T

kl, Ly = (e — 1"’“2&) and 1., is the position of the center of mass of the Voronoi
edge between k and | (note that Ly is defined in a slightly different way to that
given by Flekkay et al. 2000). As noted earlier, the mass equation does not contain
any stochastic term.

It is important to stress that the right hand side of Eq. (5.2) is entirely due
to the motion of the Voronoi partition, in particular to the rotation of the edge
between two DPs due to the component of the relative velocity in the ix; direction;
it is zero if the centre of mass of the edge kl corresponds to the point x’ = 0.
We can interpret it as a consequence of the discretisation in terms of the Voronoi
tessellation.

where Qi = Iy P is a factor accounting for the twisting of the Voronoi edge

(b) Momentum equation

The velocity field must be discretised in order to obtain a closed scheme for the
pressure tensor. Any change in the discretisation of the velocity produces a change
in the sizes and structure of the fluctuations. In fact, the force fluctuations are
designed to re-introduce into the system the energy dissipated by the stress tensor
and are derived from the stress tensor via the fluctuation-dissipation theorem.

Our discretisation of the stress tensor keeps the interaction between DPs pair-
wise. The velocity gradients are computed via finite differences between the Voronoi
centres of mass ri" and r;™. Given the pairwise nature of the stresses, the ve-
locity gradient matrix is composed only of one single component corresponding

to the derivative along ef]* = rf*/rij" given by 3‘231 = %, where r{™ is the
kl kl
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centre of mass of DP %k and r}* = r{™ — r{™. The resulting stress tensor is
o —ﬁ(eil U + Upef®), giving the followmg pressure forces

[l U
D Tl - ey = Zlkl [ - Tcim(ekl e Up + Up e egf”) |- (5.3)
7 ki

Other discretisations of the stress tensor could be used (Serrano & Espaiol 2001;
Serrano et al. 2001). In particular, when the Voronoi centre is used, instead of the
Voronoi centre of mass, the pressure tensor (5.3) reduces to the discretisation of
Flekkgy et al. (2000).

(¢) Energy equation

In this subsection, we develop the energy conservation Eq. (3.17) making similar
assumptions to those used in the derivation of the mass and momentum equations.
The new terms we have to deal with in the energy equation are the average heat
flux J,, which is approximated using finite differences as

T,
T, = =A-en, (5.4)

Tk

and the average of the term < m(v'v' - ey) - % > in Eq. (3.17) representing
the increase of internal energy due to the work done by the stress forces. The final
average energy equation is

Ty 1(E U
By =3 (‘Alkl# 5 (V: + v ) Q. — (Mg - egy) - %) dt.  (5.5)
b

(d) Fluctuations from fluctuating hydrodynamics

To derive the fluctuations in fluctuating hydrodynamics (FH) the correct entropy
production is needed (Landau & Lifshitz 1989). In the Landau and Lifshitz theory
of FH this entropy production S is derived on the basis of continuum fields. In our
case there is already a fundamental discretisation present, and we need to re-derive
S on the basis of the forces acting between these discrete elements, i.e. the DP’s.

As in FH we start out by assuming a local thermodynamic equilibrium on the
scale of the DP’s. This implies that we can write the second law of thermodynamics
for each DP in the form

TyASy = AEg + praAVi — prg A My (5.6)

where T}, is the temperature of DPj while the pressure pg; and the chemical poten-
tial uy; are associated with the overlap region where the volume and mass exchange
take place. Eq. (5.6) is to be interpreted as a fluctuationless equation. The average
of the energy Eq. (5.5) may be written in the form

AE
A—tk = > -pulAVi+ FDIS Uk — >\lkl
1 kl
+ boundary twisting terms (5.7)
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where FEZIS is the dissipative or viscous force acting between DP; and DP;. Using
the velocity-gradient discretisation with the distance r{;* between centres of mass,

the dissipative force takes the form

l
FR'S = TH (4 - ef Uy + (Uss - era)ef) (5.8)
kl

where e is the unit vector pointing between the DP centres of mass.

The boundary twisting terms in Eq. (5.7) are the advective terms that are caused
by the motion of the Voronoi boundaries. But only the overall entropy production
Stor is of interest for the determination of the fluctuations, and boundary motion
cannot affect Stor. This is so because, when boundaries move, the entropy trans-
ported out of one cell must equal the entropy transported into the neighbouring
cell. This follows from the extensive nature of entropy (which we assume applies
here). Substituting Eq. (5.7) in Eq. (5.6) and summing over k we may write

1 /1 T
ASror =Y ASy =AtY T (51?3’5 Uy — /\lk,@> . (5.9)
k kl

This result implies that the mass and volume exchange do not affect the fluctuations
in the energy and momentum currents. These fluctuations only depend on the heat
conduction and the work done by the dissipative force.

We would like to write Eq. (5.9) in the form of a sum over contributions that
correspond to the overlap regions Iy, i.e. AStor = > ASy;, where the sum runs
over all segments [;. Since the sum in Eq. (5.9) runs over all k¥ and [ we order
it in pairs (ASy;) that consist of the entropy contribution from k to [ plus the
contribution from [ to k. This way of making Eq. (5.9) symmetric yields

Algi <Tkl le) DIS Ukl)

ASy = — — ——)+F -— | At, 5.10
o= (-2 (R - ) ris - 5 (5.10)
where Oy = %ﬁ% Using Ty = Ty — Ty = =Ty, a simple Taylor expansion to

lowest order in Tj; and Sy = ASyi /At gives

- Twil T U
S = AEEM <9—“> +FDS. @—’” : (5.11)
kl kl kl

where we have used the fact that to lowest order in T}; we may interchange ©; and
T). The Landau formalism of fluctuating hydrodynamics is based on the general
fluctuation-dissipation relation for Langevin equations. We shall apply the same
formalism here as well, and so we first briefly summarise it (Landau & Lifshitz
1989; de Groot & Mazur 1962) If some flux variable # is linearly related to the
corresponding force X = §5/0x , where S is the total entropy of the system, then
the magnitude of the fluctuations in that relation is given by the linear coefficient
relating £ and X . Mathematically, if

Tq =Ly Xp + Zja(t) (512)
then
(Ta(t)76(0)) = (Tap + Toa)d(t), (5.13)
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where as before summation over repeated indices is implied. If &, is known (or
chosen) and S is determined, X, may be identified. Then the fluctuations follow
directly from the coefficient I in Eq. (5.12). This Langevin dynamics will produce
the Gibbs distribution e5(#)/k5 for the variables z (Landau & Lifshitz 1989).

We choose &, — FDI and )\l’”g,’f’ and thus obtain X, — U’” , and T’” . Using

the above identifications and replacmg the index a with the 1ndex for the link Kl
and correspondingly b — (kl)’ we may write

Orinli
= Tc’]n Sery(iny (€1 - €51 + egref) - Xy (5.14)
kl

where §(x1y(k1y = Orrr O + O Spr is nonzero (with the value one) only if the pair
(kl) coincides with (kl)'. Likewise, for the heat flow terms we may write

07 Ak

kl

Ty = O(kty (ki) X (k1 (5.15)
for the components of & containing the heat conduction terms. This determines I’
and hence we have that

2ksOrinl

(Fr(t)Fr(0)) = T(ekl ep 1+ ep"ew),
kl

_ _ 2kpO2, Ay
(G (B)Gr (0)) = ——H—= (5.16)
Tkl
where we have re-inserted Boltzmann’s constant at the appropriate places. These
are exactly the relations we could have established alternatively by means of a
Fokker-Planck analysis. Finally, we may multiply the force equation through by ey,
or its normal to obtain
4kpOinly

<Fl‘cll (t)ﬁl‘ell(o» = 2(Fj (1) F; (0)) = Tekl en’. (5.17)

6. Conclusions

Our model is derived from a microscopic description as in standard kinetic the-
ory. The kinetic derivation is coarse-grained on Lagrangian finite volumes given by
the Voronoi tessellation. One of the advantages of using the Voronoi tessellation is
the immediately derivable form of the dissipative part of the evolution equations,
although this comes at the price of a more complicated geometry and requires
knowledge of the volume associated with each DP. The Voronoi tessellation is used
because it provides a local volume for the DPs which represents well the local prop-
erties of the fluid, in terms of mass, momentum and energy. The fluctuations in the
model have been derived via the entropy from fluctuating hydrodynamics, without
the need to compute the Fokker-Planck equation as in previous DPD models. The
kinetic derivation shows where and how the contributions of the intermolecular po-
tential appear. This new DPD model can be used inter alia as a starting point for
simulations of complex fluids where more sophisticated physical relationships need
to be inserted via the pair-distribution function and on which work is currently in
progress. An important feature of this multiscale DPD model is that there is no a
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priori fixed scale for the dissipative particles. They can represent, for example, the
correct physical scales for polymer molecules inserted within a fluid described by
other DPs, including full hydrodynamic interactions. By contrast, the fixed scale
of the earlier DPD models leads to both fundamental and practical difficulties in
problems involving more than one length scale.

Extended numerical validation of this Voronoi based model is in progress, at
equilibrium (Serrano et al. 2001) to check the thermodynamic consistency and in
three spatial dimensions (De Fabritiis & Coveney 2001).
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